topqad_sdk.noiseprofiler package
Subpackages
- topqad_sdk.noiseprofiler.libnoise package
PhysicalDepolarizingPhysicalDepolarizing.calculate_stabilization_time()PhysicalDepolarizing.from_dict()PhysicalDepolarizing.from_preset()PhysicalDepolarizing.noise_model_namePhysicalDepolarizing.strength_gate_operation_noise_channel()PhysicalDepolarizing.strength_idle_qubit_noise_channel()PhysicalDepolarizing.strength_idle_qubit_stochastic_noise_channel()PhysicalDepolarizing.strength_spam_operation_noise_channel()
UniformDepolarizing
- topqad_sdk.noiseprofiler.libprotocols package
LatticeSurgeryLatticeSurgery.add_instance()LatticeSurgery.add_noise_model()LatticeSurgery.cancel()LatticeSurgery.execute_simulation()LatticeSurgery.fit_data()LatticeSurgery.fit_optionsLatticeSurgery.includes_postselectionLatticeSurgery.load()LatticeSurgery.noise_modelsLatticeSurgery.plot()LatticeSurgery.protocol_categoryLatticeSurgery.protocol_nameLatticeSurgery.protocol_parametersLatticeSurgery.protocol_subcategoryLatticeSurgery.set_simulation_parameters()LatticeSurgery.simulation_tableLatticeSurgery.update_results()LatticeSurgery.valid_observables
MagicStatePreparationHookInjectionMagicStatePreparationHookInjection.add_instance()MagicStatePreparationHookInjection.add_noise_model()MagicStatePreparationHookInjection.cancel()MagicStatePreparationHookInjection.execute_simulation()MagicStatePreparationHookInjection.fit_data()MagicStatePreparationHookInjection.fit_optionsMagicStatePreparationHookInjection.includes_postselectionMagicStatePreparationHookInjection.load()MagicStatePreparationHookInjection.noise_modelsMagicStatePreparationHookInjection.plot()MagicStatePreparationHookInjection.protocol_categoryMagicStatePreparationHookInjection.protocol_nameMagicStatePreparationHookInjection.protocol_parametersMagicStatePreparationHookInjection.protocol_subcategoryMagicStatePreparationHookInjection.set_simulation_parameters()MagicStatePreparationHookInjection.simulation_tableMagicStatePreparationHookInjection.update_results()
MagicStatePreparationRepCodeMagicStatePreparationRepCode.add_instance()MagicStatePreparationRepCode.add_noise_model()MagicStatePreparationRepCode.cancel()MagicStatePreparationRepCode.execute_simulation()MagicStatePreparationRepCode.fit_data()MagicStatePreparationRepCode.fit_optionsMagicStatePreparationRepCode.includes_postselectionMagicStatePreparationRepCode.load()MagicStatePreparationRepCode.noise_modelsMagicStatePreparationRepCode.plot()MagicStatePreparationRepCode.protocol_categoryMagicStatePreparationRepCode.protocol_nameMagicStatePreparationRepCode.protocol_parametersMagicStatePreparationRepCode.protocol_subcategoryMagicStatePreparationRepCode.set_simulation_parameters()MagicStatePreparationRepCode.simulation_tableMagicStatePreparationRepCode.update_results()
MemoryMemory.add_instance()Memory.add_noise_model()Memory.cancel()Memory.execute_simulation()Memory.fit_data()Memory.fit_optionsMemory.includes_postselectionMemory.load()Memory.noise_modelsMemory.plot()Memory.protocol_categoryMemory.protocol_nameMemory.protocol_parametersMemory.protocol_subcategoryMemory.set_simulation_parameters()Memory.simulation_tableMemory.update_results()
StabilityStability.add_instance()Stability.add_noise_model()Stability.cancel()Stability.execute_simulation()Stability.fit_data()Stability.fit_optionsStability.includes_postselectionStability.load()Stability.noise_modelsStability.plot()Stability.protocol_categoryStability.protocol_nameStability.protocol_parametersStability.protocol_subcategoryStability.set_simulation_parameters()Stability.simulation_tableStability.update_results()
- topqad_sdk.noiseprofiler.libprotocols models
- topqad_sdk.noiseprofiler.qre_noiseprofile package
Module contents
- class topqad_sdk.noiseprofiler.FitSpecification(fit_ansatz: str, param_bounds: tuple[list, list], y_scale: str, fit_ansatz_latex: str, ind_math_symbol: str)[source]
Contains all information to specify a fit for a given class of curves.
- fit_ansatz
The fit function.
- Type:
Callable
- param_bounds
The parameter bounds.
- Type:
tuple[list, list]
- y_scale
Either ‘linear’ or ‘log’.
- Type:
str
- fit_ansatz_latex
The latex description of the fit function. Use raw strings.
- Type:
str
- ind_math_symbol
Indicates the independent variable in fit_ansatz.
- Type:
str
Examples
import numpy as np from topqad_sdk.noiseprofiler import FitSpecification def fit_ansatz_memory_d_ler(distance, p_1, p_2): return -(distance+1)/2 * np.log(p_2) + 2*np.log(distance) + np.log(p_1) FitSpecification( fit_ansatz=fit_ansatz_memory_d_ler, param_bounds=([0, 0], [np.inf, np.inf]), y_scale='log', fit_ansatz_latex=r"{p_1} d^2 \times {p_2}^{{-\frac{{d+1}}{{2}}}}", ind_math_symbol="d", )
- fit_ansatz: str
- fit_ansatz_latex: str
- ind_math_symbol: str
- param_bounds: tuple[list, list]
- y_scale: str
- class topqad_sdk.noiseprofiler.Quantity(*, value: float, unit: str)[source]
A basic quantity with a value and unit.
- value
The numerical value of the quantity.
- Type:
float
- unit
The unit of the quantity (e.g., ‘ns’, ‘μs’, ‘ms’).
- Type:
str
- model_post_init(context: Any, /) None
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that’s what pydantic-core passes when calling it.
- Parameters:
self – The BaseModel instance.
context – The context.
- unit: str
- value: float